- Improved efficiency and readability of the RfbBitmap configuration logic. Refactored redundant code blocks for different pixel format (bpp) configurations into a single, streamlined method. This change enhances maintainability and clarity of the bitmap configuration process.

- Added cursor pseudo encoding support.

- Added Windows support for cursor image capturing in `get_cursor_image` method. Implemented Windows-specific logic using the `win32gui`, `win32ui`, and related libraries to capture the current cursor image, enhancing the cross-platform capability of the application.

- Fixed issues in `get_bitmap` method for handling different bpp formats. Specifically addressed the processing logic for 16 bpp (BGR565) format, ensuring that the image conversion and rendering are handled correctly for VNC clients expecting this format.

- Added initial Tight encoding support.

- Updated the `send_image` method in the Tight encoding class to correctly handle JPEG and ZLIB compression. This includes proper signaling to the client about the type of compression used (JPEG or ZLIB) and ensuring that the data is formatted and sent according to the Tight encoding specifications.

- Added checks and conversions in `send_image` to handle different image modes (like RGBX and RGBA) and convert them to the appropriate format (RGB) before compression and transmission.

- Implemented a more robust and accurate method for determining when to use JPEG compression in Tight encoding based on the unique color count and image characteristics.

These updates significantly improve the functionality, stability, and compatibility of the VNC server, particularly in handling different pixel formats and encoding methods.
This commit is contained in:
Matias Fernandez
2023-12-06 09:21:26 -03:00
parent 76e309ef08
commit 2bc431f0a8
18 changed files with 650 additions and 433 deletions

View File

@@ -1,260 +1,15 @@
# BGR233 palette
palette = [
0, 0, 0,
36, 0, 0,
73, 0, 0,
109, 0, 0,
146, 0, 0,
182, 0, 0,
219, 0, 0,
255, 0, 0,
0, 36, 0,
36, 36, 0,
73, 36, 0,
109, 36, 0,
146, 36, 0,
182, 36, 0,
219, 36, 0,
255, 36, 0,
0, 73, 0,
36, 73, 0,
73, 73, 0,
109, 73, 0,
146, 73, 0,
182, 73, 0,
219, 73, 0,
255, 73, 0,
0, 109, 0,
36, 109, 0,
73, 109, 0,
109, 109, 0,
146, 109, 0,
182, 109, 0,
219, 109, 0,
255, 109, 0,
0, 146, 0,
36, 146, 0,
73, 146, 0,
109, 146, 0,
146, 146, 0,
182, 146, 0,
219, 146, 0,
255, 146, 0,
0, 182, 0,
36, 182, 0,
73, 182, 0,
109, 182, 0,
146, 182, 0,
182, 182, 0,
219, 182, 0,
255, 182, 0,
0, 219, 0,
36, 219, 0,
73, 219, 0,
109, 219, 0,
146, 219, 0,
182, 219, 0,
219, 219, 0,
255, 219, 0,
0, 255, 0,
36, 255, 0,
73, 255, 0,
109, 255, 0,
146, 255, 0,
182, 255, 0,
219, 255, 0,
255, 255, 0,
0, 0, 85,
36, 0, 85,
73, 0, 85,
109, 0, 85,
146, 0, 85,
182, 0, 85,
219, 0, 85,
255, 0, 85,
0, 36, 85,
36, 36, 85,
73, 36, 85,
109, 36, 85,
146, 36, 85,
182, 36, 85,
219, 36, 85,
255, 36, 85,
0, 73, 85,
36, 73, 85,
73, 73, 85,
109, 73, 85,
146, 73, 85,
182, 73, 85,
219, 73, 85,
255, 73, 85,
0, 109, 85,
36, 109, 85,
73, 109, 85,
109, 109, 85,
146, 109, 85,
182, 109, 85,
219, 109, 85,
255, 109, 85,
0, 146, 85,
36, 146, 85,
73, 146, 85,
109, 146, 85,
146, 146, 85,
182, 146, 85,
219, 146, 85,
255, 146, 85,
0, 182, 85,
36, 182, 85,
73, 182, 85,
109, 182, 85,
146, 182, 85,
182, 182, 85,
219, 182, 85,
255, 182, 85,
0, 219, 85,
36, 219, 85,
73, 219, 85,
109, 219, 85,
146, 219, 85,
182, 219, 85,
219, 219, 85,
255, 219, 85,
0, 255, 85,
36, 255, 85,
73, 255, 85,
109, 255, 85,
146, 255, 85,
182, 255, 85,
219, 255, 85,
255, 255, 85,
0, 0, 170,
36, 0, 170,
73, 0, 170,
109, 0, 170,
146, 0, 170,
182, 0, 170,
219, 0, 170,
255, 0, 170,
0, 36, 170,
36, 36, 170,
73, 36, 170,
109, 36, 170,
146, 36, 170,
182, 36, 170,
219, 36, 170,
255, 36, 170,
0, 73, 170,
36, 73, 170,
73, 73, 170,
109, 73, 170,
146, 73, 170,
182, 73, 170,
219, 73, 170,
255, 73, 170,
0, 109, 170,
36, 109, 170,
73, 109, 170,
109, 109, 170,
146, 109, 170,
182, 109, 170,
219, 109, 170,
255, 109, 170,
0, 146, 170,
36, 146, 170,
73, 146, 170,
109, 146, 170,
146, 146, 170,
182, 146, 170,
219, 146, 170,
255, 146, 170,
0, 182, 170,
36, 182, 170,
73, 182, 170,
109, 182, 170,
146, 182, 170,
182, 182, 170,
219, 182, 170,
255, 182, 170,
0, 219, 170,
36, 219, 170,
73, 219, 170,
109, 219, 170,
146, 219, 170,
182, 219, 170,
219, 219, 170,
255, 219, 170,
0, 255, 170,
36, 255, 170,
73, 255, 170,
109, 255, 170,
146, 255, 170,
182, 255, 170,
219, 255, 170,
255, 255, 170,
0, 0, 255,
36, 0, 255,
73, 0, 255,
109, 0, 255,
146, 0, 255,
182, 0, 255,
219, 0, 255,
255, 0, 255,
0, 36, 255,
36, 36, 255,
73, 36, 255,
109, 36, 255,
146, 36, 255,
182, 36, 255,
219, 36, 255,
255, 36, 255,
0, 73, 255,
36, 73, 255,
73, 73, 255,
109, 73, 255,
146, 73, 255,
182, 73, 255,
219, 73, 255,
255, 73, 255,
0, 109, 255,
36, 109, 255,
73, 109, 255,
109, 109, 255,
146, 109, 255,
182, 109, 255,
219, 109, 255,
255, 109, 255,
0, 146, 255,
36, 146, 255,
73, 146, 255,
109, 146, 255,
146, 146, 255,
182, 146, 255,
219, 146, 255,
255, 146, 255,
0, 182, 255,
36, 182, 255,
73, 182, 255,
109, 182, 255,
146, 182, 255,
182, 182, 255,
219, 182, 255,
255, 182, 255,
0, 219, 255,
36, 219, 255,
73, 219, 255,
109, 219, 255,
146, 219, 255,
182, 219, 255,
219, 219, 255,
255, 219, 255,
0, 255, 255,
36, 255, 255,
73, 255, 255,
109, 255, 255,
146, 255, 255,
182, 255, 255,
219, 255, 255,
255, 255, 255
]
def generate_bgr233_palette():
palette = []
for b in range(4):
for g in range(8):
for r in range(4):
red = int(r * 255 / 3)
green = int(g * 255 / 7)
blue = int(b * 255 / 3)
palette.extend([red, green, blue])
return palette
palette = generate_bgr233_palette()

View File

@@ -19,4 +19,6 @@
from . import common
from . import raw
from . import zlib
#from . import zrle
from . import tight
from . import cursor

View File

@@ -20,10 +20,14 @@ encodings = {}
class ENCODINGS:
raw = 0
zlib = 6
tight = 7
#zrle = 16
# supported pseudo-encodings
cursor = -239
encodings_priority = [
#ENCODINGS.zrle,
ENCODINGS.tight,
ENCODINGS.zlib,
ENCODINGS.raw
]

View File

@@ -15,10 +15,28 @@
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import os
import struct
import ctypes
import ctypes.util
import platform
from PIL import Image, ImageChops, ImageDraw, ImagePalette
import base64
from io import BytesIO
from . import common
from struct import *
from lib import log
import zlib
OS_NAME = platform.system()
if OS_NAME == 'Linux':
import lib.oshelpers.x11 as x11
Xcursor = x11.XCursor
if OS_NAME == 'Windows':
import lib.oshelpers.windows_cursor as windows_cursor
class Encoding:
name = 'Cursor'
@@ -31,6 +49,54 @@ class Encoding:
def __init__(self):
log.debug("Initialized", __name__)
self.default_cursor_data = 'iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAACc0lEQVR4nK2Wv0sbYRjHP/fDyNUGalKitBDI4FAojg5NF8M7BFIPUkvSopuQoYMgFrl/wbWbndrFuBocAroVHCIdJAaxzdJuNYXGBpIgsU8H7zSpGo3mhS/3Hvfe9/N837t7OI3zobXNhT4Nre2otZ3/7RdEbwOYSqk4MACYbdfuPDTXcKherzeUUklgyAX1BaK5ZkERkUql0lBKpYD7/YJogA94LCJi27YcHh42lVLpfkE0YBAIi4iEw2FJJpNSqVSaSqnX/YB0ACKRiEQiEZmenu4bpAMwNjZ2pnQ6fWfIhcWGYZxpd3eX+fn5wWw2+1Ep9cItxOgFcmGhaZodKhaLLCws3BrSNYGnYrHI4uKiB0n0Ark2gadSqcTS0tLg2traJxficyHaBddeE3gqlUo4juNB4m0proR4Dc4HjIjI92g0ekrWdQzDoNVqsbq6Sjgc7rix0Wg0bdt+tbW1ladLczQvS6DrOo7jsLe3Ry6XY319nUAg8GV2dvY90ASqwFfg51XG/6c4+w5isZjk83nZ39//XS6XZXJyUqampqRarR6HQqEo8Ah4CFj08AzEq8RxHCzL+jExMfGu1Wr9Gh8fp9FosL29PTA3N/cSqLkJmsDJdQnaAScAmqZ9i8fjb2u12ueVlZWcbduYpsnGxgaZTOYNp9vaterLtsgAApubmwXLsp4BIcA/PDz8vFqtHs/MzEgikZCjoyMJBoNPOG0ZPUN8lmWNct5zBoDR5eXl3MHBgezs7EihUCgDI7cBtCfxXl0duKfr+tNUKvUhk8lk/X5/DPDTQy/qVoUH8QEP3PkfoE4PPwU3iemBcI25qTnAP3ZG9LuVtmFhAAAAAElFTkSuQmCC'
self.default_cursor_img = Image.open(BytesIO(base64.b64decode(self.default_cursor_data)))
def get_cursor_image(self):
if OS_NAME == 'Windows':
return windows_cursor.get_cursor_image()
elif OS_NAME == 'Linux':
cursor = Xcursor()
return cursor.get_cursor_image()
elif OS_NAME == 'Darwin':
if self.default_cursor_img.mode != 'RGBA':
self.default_cursor_img = self.default_cursor_img.convert('RGBA')
return self.default_cursor_img
else:
return None
def send_cursor(self, x, y, cursor):
sendbuff = bytearray()
sendbuff.extend(pack("!B", 0)) # message type 0 == SetCursorPosition
sendbuff.extend(pack("!H", x))
sendbuff.extend(pack("!H", y))
self.cursor_sent = True
if cursor is not None:
w, h = cursor.size
cursor_bytes = cursor.convert("RGBA").tobytes("raw", "BGRA")
# Invert alpha channel if needed
pixels = bytearray(cursor_bytes)
for i in range(0, len(pixels), 4):
pixels[i + 3] = 255 - pixels[i + 3]
sendbuff.extend(pack("!B", 1)) # message type 1 == SetCursorShape
sendbuff.extend(pack("!H", w)) # width
sendbuff.extend(pack("!H", h)) # height
sendbuff.extend(pixels)
else:
sendbuff.extend(pack("!B", 0)) # message type 0 == SetCursorPosition
sendbuff.extend(pack("!H", x))
sendbuff.extend(pack("!H", y))
return sendbuff
common.encodings[common.ENCODINGS.cursor] = Encoding
log.debug("Loaded encoding: %s (%s)" % (__name__, Encoding.id))

101
lib/encodings/tight.py Normal file
View File

@@ -0,0 +1,101 @@
from . import common
from lib import log
from struct import *
import zlib
from io import BytesIO
import numpy as np
class Encoding:
name = 'tight'
id = 7
description = 'Tight VNC encoding'
enabled = True
def __init__(self):
self.compress_obj = zlib.compressobj(
zlib.Z_DEFAULT_COMPRESSION,
zlib.DEFLATED,
zlib.MAX_WBITS,
zlib.DEF_MEM_LEVEL,
zlib.Z_DEFAULT_STRATEGY
)
self._last_compression_was_jpeg = False
def send_image(self, x, y, w, h, image):
sendbuff = bytearray()
if image.mode == 'RGBX' or image.mode == 'RGBA':
image = image.convert('RGB')
rectangles = 1
sendbuff.extend(pack("!BxH", 0, rectangles)) # FramebufferUpdate
sendbuff.extend(pack("!HHHH", x, y, w, h))
sendbuff.extend(pack(">i", self.id))
if self._should_use_jpeg(image, 64):
self._last_compression_was_jpeg = True
compressed_data = self._compress_image_jpeg(image)
sendbuff.append(0x90) # 0x90 = 10010000 = JPEG subencoding
else:
compressed_data = self._compress_image_zlib(image)
sendbuff.append(0) # control byte
# content lenght
sendbuff.extend(self._send_compact_length(len(compressed_data)))
# Tight data
sendbuff.extend(compressed_data)
return sendbuff
def _send_compact_length(self, length):
sendbuff = bytearray()
while True:
# Toma los 7 bits más bajos del tamaño
byte = length & 0x7F
length >>= 7
# Si aún hay más datos, establece el bit alto y continúa
if length > 0:
byte |= 0x80
sendbuff.append(byte)
if length == 0:
break
return sendbuff
def _should_use_jpeg(self, image, threshold=256):
if image.mode == 'P':
return False
if image.mode == 'RGB':
width, height = image.size
sample_size = min(width * height, 1000)
sample = np.array(image).reshape(-1, 3)[:sample_size]
unique_colors = np.unique(sample, axis=0)
return len(unique_colors) > threshold
return False
def _compress_image_jpeg(self, image, quality=75):
buffer = BytesIO()
image.save(buffer, format="JPEG", quality=quality)
jpeg_data = buffer.getvalue()
buffer.close()
return jpeg_data
def _compress_image_zlib(self, image):
if self.compress_obj is None or self._last_compression_was_jpeg:
self.compress_obj = zlib.compressobj(
zlib.Z_DEFAULT_COMPRESSION,
zlib.DEFLATED,
-zlib.MAX_WBITS, # El negativo omite la inclusión de un encabezado zlib.
zlib.DEF_MEM_LEVEL,
zlib.Z_DEFAULT_STRATEGY
)
self._last_compression_was_jpeg = False
zlib_data = self.compress_obj.compress(image.tobytes()) + self.compress_obj.flush(zlib.Z_SYNC_FLUSH)
return zlib_data
common.encodings[common.ENCODINGS.tight] = Encoding
log.debug("Loaded encoding: %s (%s)" % (__name__, Encoding.id))

View File

@@ -1,6 +1,6 @@
from . import common
from struct import *
from lib import log
from struct import *
import zlib
@@ -39,13 +39,13 @@ class Encoding:
sendbuff.extend(pack(">i", self.id))
#log.debug("Compressing...")
zlibdata = self._compressObj.compress( image.tobytes() )
zlibdata = self._compressObj.compress(image.tobytes())
zlibdata += self._compressObj.flush(zlib.Z_FULL_FLUSH)
#log.debug("LEN", len(zlibdata))
l = pack("!I", len(zlibdata) )
sendbuff.extend( l ) # send length
sendbuff.extend( zlibdata ) # send compressed data
l = pack("!I", len(zlibdata))
sendbuff.extend(l) # send length
sendbuff.extend(zlibdata) # send compressed data
return sendbuff

95
lib/encodings/zrle.py Normal file
View File

@@ -0,0 +1,95 @@
from . import common
from lib import log
import zlib
from struct import pack
from PIL import Image
class Encoding:
name = 'zrle'
id = 16
description = 'zrle VNC encoding'
enabled = True
def __init__(self):
log.debug("Initialized", __name__)
self._compressObj = zlib.compressobj()
def send_image(self, x, y, w, h, image):
sendbuff = bytearray()
rectangles = 1
sendbuff.extend(pack("!BxH", 0, rectangles)) # FramebufferUpdate
sendbuff.extend(pack("!HHHH", x, y, w, h))
sendbuff.extend(pack(">i", self.id)) # ID de encoding ZRLE
tmpbuf = bytearray()
# Dividir la imagen en tiles y comprimirlas
for tile_y in range(0, h, 64):
for tile_x in range(0, w, 64):
tile = image.crop((tile_x, tile_y, min(tile_x + 64, w), min(tile_y + 64, h)))
encoded_tile = self.tile_encode(tile)
tmpbuf.extend(encoded_tile)
compressed_data = self._compressObj.compress(tmpbuf)
compressed_data += self._compressObj.flush(zlib.Z_SYNC_FLUSH)
sendbuff.extend(pack("!I", len(compressed_data)))
sendbuff.extend(compressed_data)
log.debug("zrle send_image", x, y, w, h, image)
return sendbuff
def tile_encode(self, tile):
"""Codifica una baldosa (tile) de la imagen usando ZRLE."""
w, h = tile.size
pixels = list(tile.getdata())
rle_data = bytearray()
# Proceso RLE para la baldosa
prev_pixel = pixels[0]
count = 1
for pixel in pixels[1:]:
if pixel == prev_pixel and count < 255:
count += 1
else:
rle_data.extend(self._pack_pixel(prev_pixel, count))
prev_pixel = pixel
count = 1
rle_data.extend(self._pack_pixel(prev_pixel, count))
# Empaquetar la data RLE con el byte de subencoding
encoded_tile = bytearray()
encoded_tile.append(128) # Subencoding RLE
encoded_tile.extend(rle_data)
return encoded_tile
def _pack_pixel(self, pixel, count):
if isinstance(pixel, tuple):
# RGBA
r, g, b, a = pixel
pixel_data = bytes([r, g, b]) # Usar solo RGB para ZRLE.
else:
pixel_data = bytes([pixel, pixel, pixel])
count_data = self._encode_run_length(count)
return pixel_data + count_data
def _encode_run_length(self, length):
"""Codifica la longitud de una secuencia para RLE."""
if length == 1:
return b""
length -= 1 # La longitud se incrementa en 1 según el protocolo ZRLE
encoded_length = bytearray()
while length > 0:
byte = length % 255
encoded_length.append(byte)
length //= 255
if length > 0:
encoded_length.append(255)
return encoded_length
common.encodings[common.ENCODINGS.zrle] = Encoding
log.debug("Loaded encoding: %s (%s)" % (__name__, Encoding.id))

View File

@@ -2,14 +2,11 @@ import sys
from PIL import Image
from lib import log
if sys.platform == "linux" or sys.platform == "linux2":
log.debug("ImageGrab: running on Linux")
from Xlib import display, X
# take screen images, that's not the best way, so here
# we use directly use xlib to take the screenshot.
class ImageGrab():
@staticmethod
def grab():
class ImageGrab():
@staticmethod
def grab():
if sys.platform == "linux" or sys.platform == "linux2":
from Xlib import display, X
dsp = display.Display()
root = dsp.screen().root
geom = root.get_geometry()
@@ -19,12 +16,8 @@ if sys.platform == "linux" or sys.platform == "linux2":
image = Image.frombytes("RGB", (w, h), raw.data, "raw", "BGRX")
return image
elif sys.platform == "darwin":
log.debug("ImageGrab: running on darwin")
import Quartz.CoreGraphics as CG
class ImageGrab():
@staticmethod
def grab():
elif sys.platform == "darwin":
import Quartz.CoreGraphics as CG
screenshot = CG.CGWindowListCreateImage(CG.CGRectInfinite, CG.kCGWindowListOptionOnScreenOnly, CG.kCGNullWindowID, CG.kCGWindowImageDefault)
width = CG.CGImageGetWidth(screenshot)
height = CG.CGImageGetHeight(screenshot)
@@ -38,6 +31,10 @@ elif sys.platform == "darwin":
return i
else:
log.debug("ImageGrab: running on Unknown!")
from PIL import ImageGrab
elif sys.platform == "win32":
from PIL import ImageGrab as WinImageGrab
return WinImageGrab.grab()
else:
log.debug("ImageGrab: running on an unknown platform!")
raise EnvironmentError("Unsupported platform")

View File

@@ -19,24 +19,18 @@ class KeyboardController:
def process_event(self, data):
# B = U8, L = U32
(self.downflag, self.key) = unpack("!BxxL", data)
log.debug("KeyEvent", self.downflag, hex(self.key))
#log.debug("KeyEvent", self.downflag, hex(self.key))
# special key
if self.key in self.kbdmap:
self.kbdkey = self.kbdmap[self.key]
log.debug("SPECIAL KEY", self.kbdkey)
#log.debug("SPECIAL KEY", self.kbdkey)
else: # normal key
try:
self.kbdkey = self.kbd.KeyCode.from_char(chr(self.key))
except:
self.kbdkey = None
# debug keypress to stdout
try:
log.debug("KEY:", self.kbdkey)
except:
log.debug("KEY: (unprintable)")
# send the actual keyboard event
try:
if self.downflag:

View File

@@ -23,38 +23,39 @@ class MouseController():
# process mouse button events
if self.buttons[0] and not self.left_pressed:
log.debug("LEFT PRESSED")
#log.debug("LEFT PRESSED")
mouse.Controller().press(mouse.Button.left)
self.left_pressed = 1
elif not self.buttons[0] and self.left_pressed:
log.debug("LEFT RELEASED")
#log.debug("LEFT RELEASED")
mouse.Controller().release(mouse.Button.left)
self.left_pressed = 0
if self.buttons[1] and not self.middle_pressed:
log.debug("MIDDLE PRESSED")
#log.debug("MIDDLE PRESSED")
mouse.Controller().press(mouse.Button.middle)
self.middle_pressed = 1
elif not self.buttons[1] and self.middle_pressed:
log.debug("MIDDLE RELEASED")
#log.debug("MIDDLE RELEASED")
mouse.Controller().release(mouse.Button.middle)
self.middle_pressed = 0
if self.buttons[2] and not self.right_pressed:
log.debug("RIGHT PRESSED")
#log.debug("RIGHT PRESSED")
mouse.Controller().press(mouse.Button.right)
self.right_pressed = 1
elif not self.buttons[2] and self.right_pressed:
log.debug("RIGHT RELEASED")
#log.debug("RIGHT RELEASED")
mouse.Controller().release(mouse.Button.right)
self.right_pressed = 0
if self.buttons[3]:
log.debug("SCROLLUP PRESSED")
#log.debug("SCROLLUP PRESSED")
mouse.Controller().scroll(0, 2)
if self.buttons[4]:
log.debug("SCROLLDOWN PRESSED")
#log.debug("SCROLLDOWN PRESSED")
mouse.Controller().scroll(0, -2)
#log.debug("PointerEvent", buttonmask, x, y)
return x, y, self.buttonmask

View File

@@ -0,0 +1,82 @@
import ctypes
import ctypes.wintypes
from PIL import Image
import numpy as np
class BITMAPINFOHEADER(ctypes.Structure):
_fields_ = [
("biSize", ctypes.wintypes.DWORD),
("biWidth", ctypes.wintypes.LONG),
("biHeight", ctypes.wintypes.LONG),
("biPlanes", ctypes.wintypes.WORD),
("biBitCount", ctypes.wintypes.WORD),
("biCompression", ctypes.wintypes.DWORD),
("biSizeImage", ctypes.wintypes.DWORD),
("biXPelsPerMeter", ctypes.wintypes.LONG),
("biYPelsPerMeter", ctypes.wintypes.LONG),
("biClrUsed", ctypes.wintypes.DWORD),
("biClrImportant", ctypes.wintypes.DWORD)
]
class RGBQUAD(ctypes.Structure):
_fields_ = [
("rgbBlue", ctypes.c_ubyte),
("rgbGreen", ctypes.c_ubyte),
("rgbRed", ctypes.c_ubyte),
("rgbReserved", ctypes.c_ubyte)
]
class BITMAPINFO(ctypes.Structure):
_fields_ = [("bmiHeader", BITMAPINFOHEADER), ("bmiColors", RGBQUAD * 1)]
class ICONINFO(ctypes.Structure):
_fields_ = [
("fIcon", ctypes.wintypes.BOOL),
("xHotspot", ctypes.wintypes.DWORD),
("yHotspot", ctypes.wintypes.DWORD),
("hbmMask", ctypes.wintypes.HBITMAP),
("hbmColor", ctypes.wintypes.HBITMAP),
]
class CURSORINFO(ctypes.Structure):
_fields_ = [
("cbSize", ctypes.wintypes.DWORD),
("flags", ctypes.wintypes.DWORD),
("hCursor", ctypes.wintypes.HANDLE),
("ptScreenPos", ctypes.wintypes.POINT),
]
def get_cursor_image():
ci = CURSORINFO()
ci.cbSize = ctypes.sizeof(CURSORINFO)
ctypes.windll.user32.GetCursorInfo(ctypes.byref(ci))
ii = ICONINFO()
ctypes.windll.user32.GetIconInfo(ci.hCursor, ctypes.byref(ii))
hdc = ctypes.windll.user32.GetDC(0) # Usar 0 en lugar de None
hbmp = ctypes.wintypes.HANDLE(ii.hbmColor) # Asegurarse de que hbmp es un HANDLE
bmpinfo = BITMAPINFO()
bmpinfo.bmiHeader.biSize = ctypes.sizeof(BITMAPINFOHEADER)
ctypes.windll.gdi32.GetDIBits(hdc, hbmp, 0, 0, None, ctypes.byref(bmpinfo), 0)
width, height = bmpinfo.bmiHeader.biWidth, bmpinfo.bmiHeader.biHeight
bmpinfo.bmiHeader.biCompression = 0 # BI_RGB
buffer = ctypes.create_string_buffer(width * height * 4)
ctypes.windll.gdi32.GetDIBits(hdc, hbmp, 0, height, buffer, ctypes.byref(bmpinfo), 0)
img = np.frombuffer(buffer, dtype=np.uint8)
img = img.reshape((height, width, 4))
img = np.flip(img, axis=0) # Las imágenes de bitmap en Windows están al revés
img = Image.fromarray(img, 'RGBA')
# Free resources
try:
ctypes.windll.gdi32.DeleteObject(hbmp)
ctypes.windll.gdi32.DeleteObject(ii.hbmMask)
ctypes.windll.user32.ReleaseDC(None, hdc)
except:
pass
return img

73
lib/oshelpers/x11.py Normal file
View File

@@ -0,0 +1,73 @@
import ctypes
from ctypes import POINTER, c_int, c_short, c_ushort, c_ulong, c_void_p, Structure, cast
from PIL import Image
import numpy as np
# Definición de Atom para su uso en la estructura XFixesCursorImage
Atom = c_ulong
# Definición de la estructura XFixesCursorImage
class XFixesCursorImage(Structure):
_fields_ = [
("x", c_short),
("y", c_short),
("width", c_ushort),
("height", c_ushort),
("xhot", c_ushort),
("yhot", c_ushort),
("cursor_serial", Atom),
("pixels", POINTER(c_ulong)), # Suponiendo que 'pixels' es un puntero a c_ulong
("atom", Atom), # Presente en la versión 2 y superiores de XFixes
("name", ctypes.c_char_p)
]
class XCursor:
def __init__(self):
# Cargar las bibliotecas X11 y Xfixes
self.xlib = ctypes.cdll.LoadLibrary("libX11.so")
self.xfixes = ctypes.cdll.LoadLibrary("libXfixes.so.3")
# Configurar los tipos de retorno
self.xlib.XOpenDisplay.restype = POINTER(c_void_p)
self.xlib.XOpenDisplay.argtypes = [ctypes.c_char_p]
self.xfixes.XFixesGetCursorImage.restype = POINTER(XFixesCursorImage)
self.xfixes.XFixesGetCursorImage.argtypes = [c_void_p]
# Abrir la conexión con X
self.display = self.xlib.XOpenDisplay(None)
if not self.display:
raise Exception("No se pudo abrir el display")
def __del__(self):
self.xlib.XCloseDisplay(self.display)
def get_cursor_image(self):
# Llamar a XFixesGetCursorImage
cursor_image_ref = self.xfixes.XFixesGetCursorImage(self.display)
if not cursor_image_ref:
# return a 2x2 red image
return Image.fromarray(np.array([[[255, 0, 0, 255], [255, 0, 0, 255]], [[255, 0, 0, 255], [255, 0, 0, 255]]], dtype=np.uint8), 'RGBA')
cursor_image = cursor_image_ref.contents
width, height = cursor_image.width, cursor_image.height
# Leer los datos de píxeles
pixels_array_type = c_ulong * (cursor_image.width * cursor_image.height)
pixels_pointer = cast(cursor_image.pixels, POINTER(pixels_array_type))
pixels_64bit = np.frombuffer(pixels_pointer.contents, dtype=np.uint64)
# Convertir cada valor de 64 bits en un píxel RGBA
pixels_rgba = np.zeros((cursor_image.height, cursor_image.width, 4), dtype=np.uint8)
for i in range(cursor_image.height):
for j in range(cursor_image.width):
pixel = int(pixels_64bit[i * cursor_image.width + j]) # Convertir a int para bit shifting
pixels_rgba[i, j, 0] = (pixel >> 16) & 0xFF # Rojo
pixels_rgba[i, j, 1] = (pixel >> 8) & 0xFF # Verde
pixels_rgba[i, j, 2] = pixel & 0xFF # Azul
pixels_rgba[i, j, 3] = (pixel >> 24) & 0xFF
return Image.fromarray(pixels_rgba, 'RGBA')

View File

@@ -15,29 +15,8 @@ class RfbBitmap():
self.red_shift = None
self.green_shift = None
self.blue_shift = None
self.bigendian = 0
def __quantizetopalette(self, silf, palette, dither=False):
"""Converts an RGB or L mode image to use a given P image's palette."""
silf.load()
# use palette from reference image
palette.load()
if palette.mode != "P":
raise ValueError("bad mode for palette image")
if silf.mode != "RGB" and silf.mode != "L":
raise ValueError(
"only RGB or L mode images can be quantized to a palette"
)
im = silf.im.convert("P", 1 if dither else 0, palette.im)
# the 0 above means turn OFF dithering
# Later versions of Pillow (4.x) rename _makeself to _new
try:
return silf._new(im)
except AttributeError:
return silf._makeself(im)
def get_bitmap(self, rectangle):
if self.bpp == 32:
redBits = 8
@@ -55,53 +34,42 @@ class RfbBitmap():
a[..., 2] = ( a[..., 2] ) & blueMask >> self.blue_shift
image = Image.fromarray(a)
if image.mode == "RGBA":
(r, g, b, a) = image.split()
image = Image.merge("RGB", (r, g, b))
del r, g, b, a
if self.primaryOrder == "rgb":
(b, g, r) = image.split()
image = Image.merge("RGB", (r, g, b))
del b,g,r
del b, g, r
image = image.convert("RGBX")
return image
elif self.bpp == 16: #BGR565
greenBits = 5
blueBits = 6
redBits = 5
image = rectangle
if self.primaryOrder == "bgr": # FIXME: does not work
(b, g, r) = image.split()
image = Image.merge("RGB", (r, g, b))
if self.depth == 16:
image = image.convert('BGR;16')
if self.depth == 15:
image = image.convert('BGR;15')
elif self.bpp == 16:
# BGR565
a = np.array(rectangle)
r = (a[..., 0] >> 3) & 0x1F
g = (a[..., 1] >> 2) & 0x3F
b = (a[..., 2] >> 3) & 0x1F
bgr565 = (r << 11) | (g << 5) | b
bgr565 = bgr565.astype('uint16')
if self.bigendian == 0:
bgr565 = bgr565.byteswap().newbyteorder()
bgr565_bytes = bgr565.tobytes()
image = Image.frombytes('RGB', rectangle.size, bgr565_bytes, 'raw', 'BGR;16')
return image
elif self.bpp == 8: #bgr233
redBits = 3
greenBits = 3
blueBits = 2
image = rectangle
palette = bgr233_palette.palette
if self.primaryOrder == "rgb":
#(b, g, r) = image.split()
#image = Image.merge("RGB", (r, g, b))
palette = np.reshape(palette, (-3,3))
palette[:,[0, 2]] = palette[:,[2, 0]]
palette = palette.flatten()
palette = list(palette)
p = Image.new('P',(16,16))
p.putpalette(palette)
image = self.__quantizetopalette(image, p, dither=self.dither)
#image = image.convert('RGB', colors=4).quantize(palette=p)
#log.debug(image)
elif self.bpp == 8:
# BGR233
image = rectangle.convert('RGB')
a = np.array(image)
r = (a[..., 0] >> 6) & 0x03
g = (a[..., 1] >> 5) & 0x07
b = (a[..., 2] >> 6) & 0x03
bgr233 = (b << 6) | (g << 3) | r
image = Image.fromarray(bgr233.astype('uint8'), 'P')
image.putpalette(bgr233_palette.palette)
return image
else: